A Novel Information Measure for Predictive Learning in a Social System Setting
نویسندگان
چکیده
We introduce a new theoretical framework, based on Shannon’s communication theory and on Ashby’s law of requisite variety, suitable for artificial agents using predictive learning. The framework quantifies the performance constraints of a predictive adaptive controller as a function of its learning stage. In addition, we formulate a practical measure, based on information flow, that can be applied to adaptive controllers which use hebbian learning, input correlation learning (ICO/ISO) and temporal difference learning. The framework is also useful in quantifying the social division of tasks in a social group of honest, cooperative food foraging, communicating agents. Simulations are in accordance with Luhmann, who suggested that adaptive agents self-organise by reducing the amount of sensory information or, equivalently, reducing the complexity of the perceived environment from the agents perspective.
منابع مشابه
A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملO8: The Importance of Promoting Talent in all Students
The educational system is designed for some students’ kind of minds (e.g., those with strengths in attention, memory, language, social skills), for others, it is a daily struggle. Unfortunately, the academic setting rarely accounts for this variability. Regardless, at some point in time (for whatever reason), almost all students “hit a wall” (or face a challenge) which can mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010